Facile preparation of hyaluronic acid and transferrin co-modified Fe3O4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo.

نویسندگان

  • Jinbin Pan
  • Shao-Kai Sun
  • Yaqiong Wang
  • Yan-Yan Fu
  • Xuejun Zhang
  • Yi Zhang
  • Chunshui Yu
چکیده

Clinical diagnosis of malignant tumors using nanoprobes needs severe improvements in the aspects of sensitivity and biocompatibility. Integrating a dual-targeting strategy with the selection of human-inherent elements and molecules as raw materials shows great potential in the development of a biosafe and sensitive nanoplatform. To carry out the proposed design, we constructed a biocompatible, dual-targeting MR imaging nanoprobe, based on Fe3O4 nanoparticles (NPs) co-modified with inherently innoxious hyaluronic acid (HA) and transferrin (Tf). HA was used as both a template and a targeting molecule to form Fe3O4@HA NPs through a one-step co-precipitation method, which were then further modified with Tf to obtain the dual-targeting Fe3O4@HA@Tf NPs at room temperature. The excellent biocompatibility of the nanoprobe was demonstrated via toxicity assays in vitro and in vivo. The desirable dual-targeting ability towards tumor cells was confirmed by a cellular uptake test (Hela cells, overexpressing both CD44 and transferrin receptors), and the developed nanoprobe was successfully applied in tumor-targeted MR imaging in vivo. In summation, we developed a dual-targeting Fe3O4 nanoprobe, following a facile procedure at room temperature. The nanoprobe showed a high targeting ability towards tumor cells and excellent biocompatibility, which showed its great potential to be applied in the clinical diagnosis of tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active-target T1-weighted MR Imaging of Tiny Hepatic Tumor via RGD Modified Ultra-small Fe3O4 Nanoprobes

Developing ultrasensitive contrast agents for the early detection of malignant tumors in liver is highly demanded. Constructing hepatic tumors specific targeting probes could provide more sensitive imaging information but still faces great challenges. Here we report a novel approach for the synthesis of ultra-small Fe3O4 nanoparticles conjugated with c(RGDyK) and their applications as active-ta...

متن کامل

LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors.

We report the synthesis, characterization and utilization of LAPONITE®-stabilized magnetic iron oxide nanoparticles (LAP-Fe3O4 NPs) as a high performance contrast agent for in vivo magnetic resonance (MR) detection of tumors. In this study, Fe3O4 NPs were synthesized by a facile controlled coprecipitation route in LAP solution, and the formed LAP-Fe3O4 NPs have great colloidal stability and abo...

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first mod...

متن کامل

Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin

Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring.   Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 46  شماره 

صفحات  -

تاریخ انتشار 2015